Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 64.574
1.
Nat Commun ; 15(1): 3882, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719809

In this randomized phase II clinical trial, we evaluated the effectiveness of adding the TLR agonists, poly-ICLC or resiquimod, to autologous tumor lysate-pulsed dendritic cell (ATL-DC) vaccination in patients with newly-diagnosed or recurrent WHO Grade III-IV malignant gliomas. The primary endpoints were to assess the most effective combination of vaccine and adjuvant in order to enhance the immune potency, along with safety. The combination of ATL-DC vaccination and TLR agonist was safe and found to enhance systemic immune responses, as indicated by increased interferon gene expression and changes in immune cell activation. Specifically, PD-1 expression increases on CD4+ T-cells, while CD38 and CD39 expression are reduced on CD8+ T cells, alongside an increase in monocytes. Poly-ICLC treatment amplifies the induction of interferon-induced genes in monocytes and T lymphocytes. Patients that exhibit higher interferon response gene expression demonstrate prolonged survival and delayed disease progression. These findings suggest that combining ATL-DC with poly-ICLC can induce a polarized interferon response in circulating monocytes and CD8+ T cells, which may represent an important blood biomarker for immunotherapy in this patient population.Trial Registration: ClinicalTrials.gov Identifier: NCT01204684.


CD8-Positive T-Lymphocytes , Cancer Vaccines , Carboxymethylcellulose Sodium/analogs & derivatives , Dendritic Cells , Glioma , Interferons , Poly I-C , Polylysine/analogs & derivatives , Humans , Dendritic Cells/immunology , Dendritic Cells/drug effects , Glioma/immunology , Glioma/therapy , Female , Male , Middle Aged , Cancer Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/therapeutic use , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Poly I-C/administration & dosage , Poly I-C/pharmacology , Adult , Toll-Like Receptors/agonists , Imidazoles/pharmacology , Imidazoles/therapeutic use , Aged , Vaccination , Monocytes/immunology , Monocytes/drug effects , Brain Neoplasms/immunology , Brain Neoplasms/therapy , Brain Neoplasms/drug therapy , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Immunotherapy/methods , Toll-Like Receptor Agonists
2.
Front Endocrinol (Lausanne) ; 15: 1361393, 2024.
Article En | MEDLINE | ID: mdl-38726344

Background: Diabetic foot ulcer (DFU) is a severe complication that occurs in patients with diabetes and is a primary factor that necessitates amputation. Therefore, the occurrence and progression of DFU must be predicted at an early stage to improve patient prognosis and outcomes. In this regard, emerging evidence suggests that inflammation-related markers play a significant role in DFU. One such potential marker, the monocyte-lymphocyte ratio (MLR), has not been extensively studied in relation to DFU. This study aimed to define a connection between MLR and DFU. Methods: A cross-sectional study was conducted using National Health and Nutrition Examination Survey (NHANES) data from 1999 to 2004. DFU was defined based on survey questionnaires assessing the presence of nonhealing ulcers in the lower extremities for more than 4 weeks in diabetes patients. The MLR was calculated as the ratio of the monocyte count to the lymphocyte count, which was directly obtained from laboratory data files. Logistic regression analysis was performed to assess the relationship between the MLR and DFU. Stratified analysis according to age, sex, body mass index, blood glucose, hemoglobin, and glycated hemoglobin categories was conducted, and multiple imputations were applied to missing data. Results: In total, 1246 participants were included; the prevalence of DFU was 9.4% (117/1246). A multivariable regression model revealed a significant association between DFU and a 0.1 unit increase in MLR after adjusting for all covariates (adjusted odds ratio=1.16, 95% confidence interval: 1.02-1.33). Subgroup analyses revealed consistent findings regarding the impact of MLR on the presence of DFU (p > 0.05). Conclusion: MLR is significantly associated with DFU in diabetes patients, and can be used as one of the indicators for predicting the occurrence of DFU. MLR assessment may be a valuable component in the follow-up of patients with diabetes.


Diabetic Foot , Lymphocytes , Monocytes , Nutrition Surveys , Humans , Diabetic Foot/blood , Diabetic Foot/epidemiology , Male , Female , Cross-Sectional Studies , Middle Aged , Retrospective Studies , Aged , United States/epidemiology , Adult , Prognosis , Lymphocyte Count , Biomarkers/blood
3.
Cell Death Dis ; 15(5): 324, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724533

Severe aplastic anemia (SAA) is a rare, fatal disease characterized by severe cytopenias and loss of hematopoietic stem cells (HSCs). Immune-mediated destruction and inflammation are known drivers of SAA, however, the underlying mechanisms driving persistent inflammation are unknown. Current treatments for SAA rely on immunosuppressive therapies or HSC transplantation, however, these treatments are not always effective. Using an established mouse model of SAA, we observed a significant increase in apoptotic cells within the bone marrow (BM) and impaired efferocytosis in SAA mice, relative to radiation controls. Single-cell transcriptomic analysis revealed heterogeneity among BM monocytes and unique populations emerged during SAA characterized by increased inflammatory signatures and significantly increased expression of Sirpa and Cd47. CD47, a "don't eat me" signal, was increased on both live and apoptotic BM cells, concurrent with markedly increased expression of signal regulatory protein alpha (SIRPα) on monocytes. Functionally, SIRPα blockade improved cell clearance and reduced accumulation of CD47-positive apoptotic cells. Lipidomic analysis revealed a reduction in the precursors of specialized pro-resolving lipid mediators (SPMs) and increased prostaglandins in the BM during SAA, indicative of impaired inflammation resolution. Specifically, 18-HEPE, a precursor of E-series resolvins, was significantly reduced in SAA-induced mice relative to radiation controls. Treatment of SAA mice with Resolvin E1 (RvE1) improved efferocytic function, BM cellularity, platelet output, and survival. Our data suggest that impaired efferocytosis and inflammation resolution contributes to SAA progression and demonstrate that SPMs, such as RvE1, offer new and/or complementary treatments for SAA that do not rely on immune suppression.


Anemia, Aplastic , CD47 Antigen , Eicosapentaenoic Acid , Animals , Anemia, Aplastic/pathology , Mice , Eicosapentaenoic Acid/analogs & derivatives , Eicosapentaenoic Acid/pharmacology , CD47 Antigen/metabolism , CD47 Antigen/genetics , Apoptosis/drug effects , Phagocytosis/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Monocytes/metabolism , Monocytes/drug effects , Inflammation/pathology , Male , Efferocytosis
4.
J Neuroinflammation ; 21(1): 125, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730470

BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.


Alzheimer Disease , Amyloid beta-Peptides , Mice, Transgenic , Monocytes , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Monocytes/metabolism , Mice , Humans , Amyloid beta-Peptides/metabolism , Male , Female , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Aged , Cystatins/metabolism , Cystatins/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Aged, 80 and over , Mice, Inbred C57BL
5.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731980

Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.


Cell Adhesion , Endothelial Cells , Extracellular Vesicles , Intercellular Adhesion Molecule-1 , Humans , Extracellular Vesicles/metabolism , Endothelial Cells/metabolism , Intercellular Adhesion Molecule-1/metabolism , Monocytes/metabolism , Cells, Cultured , Apoptosis
6.
Front Immunol ; 15: 1405249, 2024.
Article En | MEDLINE | ID: mdl-38742110

Introduction: Exploring monocytes' roles within the tumor microenvironment is crucial for crafting targeted cancer treatments. Methods: This study unveils a novel methodology utilizing four 20-color flow cytometry panels for comprehensive peripheral immune system phenotyping, specifically targeting classical, intermediate, and non-classical monocyte subsets. Results: By applying advanced dimensionality reduction techniques like t-distributed stochastic neighbor embedding (tSNE) and FlowSom analysis, we performed an extensive profiling of monocytes, assessing 50 unique cell surface markers related to a wide range of immunological functions, including activation, differentiation, and immune checkpoint regulation. Discussion: This in-depth approach significantly refines the identification of monocyte subsets, directly supporting the development of personalized immunotherapies and enhancing diagnostic precision. Our pioneering panel for monocyte phenotyping marks a substantial leap in understanding monocyte biology, with profound implications for the accuracy of disease diagnostics and the success of checkpoint-inhibitor therapies. Key findings include revealing distinct marker expression patterns linked to tumor progression and providing new avenues for targeted therapeutic interventions.


Biomarkers , Flow Cytometry , Immunophenotyping , Monocytes , Humans , Monocytes/immunology , Monocytes/metabolism , Flow Cytometry/methods , Cluster Analysis , Immunophenotyping/methods , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/diagnosis
7.
BMC Musculoskelet Disord ; 25(1): 379, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745277

BACKGROUND: Biomarkers that predict the treatment response in patients with knee osteoarthritis are scarce. This study aimed to investigate the potential role of synovial fluid cell counts and their ratios as biomarkers of primary knee osteoarthritis. METHODS: This retrospective study investigated 96 consecutive knee osteoarthritis patients with knee effusion who underwent joint fluid aspiration analysis and received concomitant intra-articular corticosteroid injections and blood tests. The monocyte-to-lymphocyte ratio (MLR) and neutrophil-to-lymphocyte ratio (NLR) were calculated. After 6 months of treatment, patients were divided into two groups: the responder group showing symptom resolution, defined by a visual analog scale (VAS) score of ≤ 3, without additional treatment, and the non-responder group showing residual symptoms, defined by a VAS score of > 3 and requiring further intervention, such as additional medication, repeated injections, or surgical treatment. Unpaired t-tests and univariate and multivariate logistic regression analyses were conducted between the two groups to predict treatment response after conservative treatment. The predictive value was calculated using the area under the receiver operating characteristic curve, and the optimal cutoff value was determined. RESULTS: Synovial fluid MLR was significantly higher in the non-responder group compared to the responder group (1.86 ± 1.64 vs. 1.11 ± 1.37, respectively; p = 0.02). After accounting for confounding variables, odds ratio of non-responder due to increased MLR were 1.63 (95% confidence interval: 1.11-2.39). The optimal MLR cutoff value for predicting patient response to conservative treatment was 0.941. CONCLUSIONS: MLR may be a potential biomarker for predicting the response to conservative treatment in patients with primary knee osteoarthritis.


Conservative Treatment , Lymphocytes , Monocytes , Osteoarthritis, Knee , Synovial Fluid , Humans , Osteoarthritis, Knee/therapy , Osteoarthritis, Knee/diagnosis , Retrospective Studies , Male , Female , Synovial Fluid/cytology , Middle Aged , Aged , Treatment Outcome , Conservative Treatment/methods , Injections, Intra-Articular , Biomarkers/analysis , Biomarkers/blood , Predictive Value of Tests , Leukocyte Count
8.
Front Immunol ; 15: 1360412, 2024.
Article En | MEDLINE | ID: mdl-38745652

A robust immune response is required for resistance to pulmonary tuberculosis (TB), the primary disease caused by Mycobacterium tuberculosis (Mtb). However, pharmaceutical inhibition of T cell immune checkpoint molecules can result in the rapid development of active disease in latently infected individuals, indicating the importance of T cell immune regulation. In this study, we investigated the potential role of CD200R during Mtb infection, a key immune checkpoint for myeloid cells. Expression of CD200R was consistently downregulated on CD14+ monocytes in the blood of subjects with active TB compared to healthy controls, suggesting potential modulation of this important anti-inflammatory pathway. In homogenized TB-diseased lung tissue, CD200R expression was highly variable on monocytes and CD11b+HLA-DR+ macrophages but tended to be lowest in the most diseased lung tissue sections. This observation was confirmed by fluorescent microscopy, which showed the expression of CD200R on CD68+ macrophages surrounding TB lung granuloma and found expression levels tended to be lower in macrophages closest to the granuloma core and inversely correlated with lesion size. Antibody blockade of CD200R in a biomimetic 3D granuloma-like tissue culture system led to significantly increased Mtb growth. In addition, Mtb infection in this system reduced gene expression of CD200R. These findings indicate that regulation of myeloid cells via CD200R is likely to play an important part in the immune response to TB and may represent a potential target for novel therapeutic intervention.


Mycobacterium tuberculosis , Myeloid Cells , Tuberculosis, Pulmonary , Humans , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Orexin Receptors/metabolism , Macrophages/immunology , Macrophages/metabolism , Adult , Female , Male , Antigens, CD/metabolism , Antigens, CD/genetics , Middle Aged , Lung/immunology , Lung/microbiology , Lung/pathology , Lung/metabolism , Biomimetics , Monocytes/immunology , Monocytes/metabolism
9.
J Clin Invest ; 134(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38747290

BACKGROUNDPreclinical studies suggest that cholesterol accumulation leads to insulin resistance. We previously reported that alterations in a monocyte cholesterol metabolism transcriptional network (CMTN) - suggestive of cellular cholesterol accumulation - were cross-sectionally associated with obesity and type 2 diabetes (T2D). Here, we sought to determine whether the CMTN alterations independently predict incident prediabetes/T2D risk, and correlate with cellular cholesterol accumulation.METHODSMonocyte mRNA expression of 11 CMTN genes was quantified among 934 Multi-Ethnic Study of Atherosclerosis (MESA) participants free of prediabetes/T2D; cellular cholesterol was measured in a subset of 24 monocyte samples.RESULTSDuring a median 6-year follow-up, lower expression of 3 highly correlated LXR target genes - ABCG1 and ABCA1 (cholesterol efflux) and MYLIP (cholesterol uptake suppression) - and not other CMTN genes, was significantly associated with higher risk of incident prediabetes/T2D. Lower expression of the LXR target genes correlated with higher cellular cholesterol levels (e.g., 47% of variance in cellular total cholesterol explained by ABCG1 expression). Further, adding the LXR target genes to overweight/obesity and other known predictors significantly improved prediction of incident prediabetes/T2D.CONCLUSIONThese data suggest that the aberrant LXR/ABCG1-ABCA1-MYLIP pathway (LAAMP) is a major T2D risk factor and support a potential role for aberrant LAAMP and cellular cholesterol accumulation in diabetogenesis.FUNDINGThe MESA Epigenomics and Transcriptomics Studies were funded by NIH grants 1R01HL101250, 1RF1AG054474, R01HL126477, R01DK101921, and R01HL135009. This work was supported by funding from NIDDK R01DK103531 and NHLBI R01HL119962.


Cholesterol , Diabetes Mellitus, Type 2 , Liver X Receptors , Prediabetic State , Signal Transduction , Humans , Prediabetic State/genetics , Prediabetic State/metabolism , Male , Female , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/epidemiology , Middle Aged , Liver X Receptors/genetics , Liver X Receptors/metabolism , Cholesterol/metabolism , Aged , ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Monocytes/metabolism , Risk Factors , ATP Binding Cassette Transporter 1/genetics , ATP Binding Cassette Transporter 1/metabolism , Aged, 80 and over
10.
Methods Mol Biol ; 2807: 261-270, 2024.
Article En | MEDLINE | ID: mdl-38743234

The development of 3D-organoid models has revolutionized the way diseases are studied. Recently, our brain organoid model has been shown to recapitulate in in vitro the human brain cytoarchitecture originally encountered in HIV-1 neuropathogenesis, allowing downstream applications. Infected monocytes, macrophages, and microglia are critically important immune cells for infection and dissemination of HIV-1 throughout brain during acute and chronic phase of the disease. Once in the brain parenchyma, long-lived infected monocytes/macrophages along with resident microglia contribute to the establishment of CNS latency in people with HIV (PWH). Hence, it is important to better understand how HIV-1 enters and establishes infection and latency in CNS to further develop cure strategies. Here we detailed an accessible protocol to incorporate monocytes (infected and/or labeled) as a model of transmigration of peripheral monocytes into brain organoids that can be applied to characterize HIV-1 neuroinvasion and virus dissemination.


Brain , HIV Infections , HIV-1 , Monocytes , Organoids , Organoids/virology , Organoids/pathology , Humans , HIV-1/physiology , HIV-1/pathogenicity , Monocytes/virology , Monocytes/immunology , HIV Infections/virology , HIV Infections/immunology , HIV Infections/pathology , Brain/virology , Brain/pathology , Brain/immunology , Microglia/virology , Microglia/immunology , Microglia/pathology , Macrophages/virology , Macrophages/immunology , Virus Latency
11.
Sci Rep ; 14(1): 10241, 2024 05 03.
Article En | MEDLINE | ID: mdl-38702365

Within the bloodstream, monocytes must traverse the microvasculature to prevent leukostasis, which is the entrapment of monocytes within the confines of the microvasculature. Using the model cell line, THP-1, and VCAM-1 coated channels to simulate the microvasculature surface, we demonstrate that monocytes predominantly adopt an amoeboid phenotype, which is characterized by the formation of blebs. As opposed to cortical actin flow in leader blebs, cell movement is correlated with myosin contraction at the cell rear. It was previously documented that cofilin-1 promotes cortical actin turnover at leader bleb necks in melanoma cells. In monocytes, our data suggest that cofilin-1 promotes the local upregulation of myosin contractility through actin cytoskeleton remodeling. In support of this concept, cofilin-1 is found to localize to a single cell edge. Moreover, the widespread upregulation of myosin contractility was found to inhibit migration. Thus, monocytes within the microvasculature may avoid entrapment by adopting an amoeboid mode of migration.


Actin Cytoskeleton , Cell Movement , Cofilin 1 , Monocytes , Monocytes/metabolism , Humans , Cofilin 1/metabolism , Actin Cytoskeleton/metabolism , Myosins/metabolism , Actins/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , THP-1 Cells
12.
Parasite Immunol ; 46(5): e13036, 2024 May.
Article En | MEDLINE | ID: mdl-38720445

Apolipoprotein E (ApoE) has been associated with several diseases including Parkinson's disease, Alzheimer's and multiple sclerosis. ApoE also has documented immunomodulatory functions. We investigated gene expression in circulating monocytes and in bone marrows of patients with visceral leishmaniasis (VL) living in an endemic area in Bihar, India, and contrasted these with control healthy subjects or other diagnostic bone marrows from individuals in the same region. Samples from VL patients were obtained prior to initiating treatment. Our study revealed significant upregulated expression of the apoE transcript in patients with VL. Furthermore, the levels of ApoE protein were elevated in serum samples of subjects with VL compared with healthy endemic controls. These observations may provide clues regarding the complex interactions between lipid metabolism and immunoregulation of infectious and inflammatory diseases.


Apolipoproteins E , Leishmaniasis, Visceral , Monocytes , Up-Regulation , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/blood , Leishmaniasis, Visceral/parasitology , Humans , Monocytes/immunology , Monocytes/metabolism , India/epidemiology , Male , Apolipoproteins E/genetics , Female , Adult , Young Adult , Adolescent , Bone Marrow/parasitology , Middle Aged , Child
13.
JCI Insight ; 9(9)2024 May 08.
Article En | MEDLINE | ID: mdl-38716730

Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-ß1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-ß1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-ß1 signaling axis.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Monocytes , Signal Transduction , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/secondary , Cell Line, Tumor , Collagen/metabolism , Extracellular Matrix Proteins/metabolism , Extracellular Matrix Proteins/genetics , LDL-Receptor Related Proteins/metabolism , LDL-Receptor Related Proteins/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Monocytes/metabolism , Monocytes/pathology , Neoplasm Metastasis , Transforming Growth Factor beta1/metabolism
14.
Stem Cell Res Ther ; 15(1): 132, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702808

BACKGROUND: Induced pluripotent stem cells (iPSCs)-derived kidney organoids are a promising model for studying disease mechanisms and renal development. Despite several protocols having been developed, further improvements are needed to overcome existing limitations and enable a wider application of this model. One of the approaches to improve the differentiation of renal organoids in vitro is to include in the system cell types important for kidney organogenesis in vivo, such as macrophages. Another approach could be to improve cell survival. Mesodermal lineage differentiation is the common initial step of the reported protocols. The glycogen synthase kinase-3 (GSK-3) activity inhibitor, CHIR99021 (CHIR), is applied to induce mesodermal differentiation. It has been reported that CHIR simultaneously induces iPSCs apoptosis that can compromise cell differentiation. We thought to interfere with CHIR-induced apoptosis of iPSCs using rapamycin. METHODS: Differentiation of kidney organoids from human iPSCs was performed. Cell survival and autophagy were analyzed using Cell counting kit 8 (CCK8) kit and Autophagy detection kit. Cells were treated with rapamycin or co-cultured with human monocytes isolated from peripheral blood or iPSCs-macrophages using a transwell co-culture system. Monocyte-derived extracellular vesicles (EVs) were isolated using polyethylene glycol precipitation. Expression of apoptotic markers cleaved Caspase 3, Poly [ADP-ribose] polymerase 1 (PARP-1) and markers of differentiation T-Box Transcription Factor 6 (TBX6), odd-skipped related 1 (OSR1), Nephrin, E-Cadherin, Paired box gene 2 (Pax2) and GATA Binding Protein 3 (Gata3) was assessed by RT-PCR and western blotting. Organoids were imaged by 3D-confocal microscopy. RESULTS: We observed that CHIR induced apoptosis of iPSCs during the initial stage of renal organoid differentiation. Underlying mechanisms implied the accumulation of reactive oxygen species and decreased autophagy. Activation of autophagy by rapamacin and by an indirect co-culture of differentiating iPSCs with iPSCs-macrophages and human peripheral blood monocytes prevented apoptosis induced by CHIR. Furthermore, monocytes (but not rapamycin) strongly promoted expression of renal differentiation markers and organoids development via released extracellular vesicles. CONCLUSION: Our data suggest that co-culturing of iPSCs with human monocytes strongly improves differentiation of kidney organoids. An underlying mechanism of monocytic action implies, but not limited to, an increased autophagy in CHIR-treated iPSCs. Our findings enhance the utility of kidney organoid models.


Apoptosis , Cell Differentiation , Induced Pluripotent Stem Cells , Kidney , Monocytes , Organoids , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/drug effects , Organoids/cytology , Organoids/metabolism , Organoids/drug effects , Apoptosis/drug effects , Cell Differentiation/drug effects , Kidney/cytology , Kidney/metabolism , Monocytes/metabolism , Monocytes/cytology , Monocytes/drug effects , Pyridines/pharmacology , Pyrimidines/pharmacology , Sirolimus/pharmacology , Autophagy/drug effects , Coculture Techniques/methods , Macrophages/metabolism , Macrophages/cytology , Macrophages/drug effects
15.
Front Immunol ; 15: 1360700, 2024.
Article En | MEDLINE | ID: mdl-38736886

Introduction: Myocardial infarction (MI) is a significant contributor to morbidity and mortality worldwide. Many individuals who survive the acute event continue to experience heart failure (HF), with inflammatory and healing processes post-MI playing a pivotal role. Polymorphonuclear neutrophils (PMN) and monocytes infiltrate the infarcted area, where PMN release high amounts of the heme enzyme myeloperoxidase (MPO). MPO has numerous inflammatory properties and MPO plasma levels are correlated with prognosis and severity of MI. While studies have focused on MPO inhibition and controlling PMN infiltration into the infarcted tissue, less is known on MPO's role in monocyte function. Methods and results: Here, we combined human data with mouse and cell studies to examine the role of MPO on monocyte activation and migration. We revealed a correlation between plasma MPO levels and monocyte activation in a patient study. Using a mouse model of MI, we demonstrated that MPO deficiency led to an increase in splenic monocytes and a decrease in cardiac monocytes compared to wildtype mice (WT). In vitro studies further showed that MPO induces monocyte migration, with upregulation of the chemokine receptor CCR2 and upregulation of inflammatory pathways identified as underlying mechanisms. Conclusion: Taken together, we identify MPO as a pro-inflammatory mediator of splenic monocyte recruitment and activation post-MI and provide mechanistic insight for novel therapeutic strategies after ischemic injury.


Monocytes , Myocardial Infarction , Peroxidase , Animals , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Infarction/metabolism , Peroxidase/metabolism , Monocytes/immunology , Monocytes/metabolism , Humans , Mice , Male , Cell Movement , Disease Models, Animal , Mice, Inbred C57BL , Female , Neutrophils/immunology , Neutrophils/metabolism , Mice, Knockout , Receptors, CCR2/metabolism , Middle Aged
16.
J Assoc Physicians India ; 72(3): 24-26, 2024 Mar.
Article En | MEDLINE | ID: mdl-38736112

AIM AND OBJECTIVE: To assess the relationship between glycated hemoglobin (HbA1c) with inflammatory markers, neutrophil-to-lymphocytes ratio (NLR), and monocyte-to-lymphocytes ratio (MLR) in controlled and uncontrolled type 2 diabetes patients. MATERIALS AND METHODS: This was a hospital-based cross-sectional study conducted at the Department of Medicine, SMS Hospital, and an attached group of hospitals (Jaipur, Rajasthan, India) after informed consent from the Ethics Committee of the institute. After obtaining informed consent from patients who met the inclusion and exclusion criteria, 200 diabetic patients were included in the study using the simple randomization method. Following a detailed history and diagnosis, vital demographic information, and blood tests were collected from patients via a predesigned preliminary questionnaire. The following blood tests were collected: white blood cell (WBC), Hb, hematocrit (HCT), red cell distribution width (RDW), neutrophils, lymphocytes, HbA1c, blood glucose, NLR ratio, and MLR ratio. Data were entered and analyzed using Statistical Package for the Social Sciences version 22. RESULTS: The mean age of patients with controlled diabetes mellitus was 54.10 years, while that of patients with uncontrolled diabetes mellitus was 55.3 years. Glycemic control was more in the age group of 51-60 years. Around 54% of males and 46% of females were included in the present study, and no association was found between the two genders with poor and good glycemic control. Around 63.29% of participants with uncontrolled diabetes have an increased NLR, and 61.39% of participants with uncontrolled diabetes have an increased MLR. A strong association was found between the NLR and MLR with the glycemic control. CONCLUSION: Uncontrolled diabetes mellitus had a positive association with inflammatory markers, that is, NLR and MLR. STATEMENT OF SIGNIFICANCE: Diabetes mellitus is the most common metabolic disorder in Asian countries. It leads to many acute and chronic complications in uncontrolled diabetes. Markers like the NLR ratio and MLR ratio are inexpensive and easily available for blood investigation. Hence, these markers are quite useful in differentiating controlled and uncontrolled diabetes and, therefore, useful in predicting blood sugar control in type 2 diabetes mellitus.


Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Lymphocytes , Monocytes , Neutrophils , Humans , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/analysis , Middle Aged , Male , Female , Cross-Sectional Studies , Biomarkers/blood , Adult , Aged , India , Blood Glucose/analysis
17.
Stem Cell Res Ther ; 15(1): 127, 2024 May 01.
Article En | MEDLINE | ID: mdl-38693589

BACKGROUND: Endometria are one of the important components of the uterus, which is located in the peritoneal cavity. Endometrial injury usually leads to intrauterine adhesions (IUA), accompanied by inflammation and cell death. We previously reported that both the endometrial ferroptosis was increased and monocytes/macrophages were involved in endometrial injury of IUA. Large peritoneal macrophages (LPMs) are recently reported to migrate into the injured tissues and phagocytose dead cells to repair the tissues. We previously demonstrated that mesenchymal stromal cells (MSCs) had made excellent progress in the repair of endometrial injury. However, it is unclear whether MSCs regulate the LPM efferocytosis against ferroptotic monocytes/macrophages in the injured endometria. METHODS: Here, endometrial injury in IUA mouse model was conducted by uterine curettage and LPS injection surgery and the samples were collected at different times to detect the changes of LPMs and ferroptotic monocytes/macrophages. We conducted LPMs depletion assay in vivo and LPMs and Erastin-induced ferroptotic THP-1 cells coculture systems in vitro to detect the LPM efferocytosis against ferroptotic monocytes/macrophages. The IUA model was treated with MSCs, and their effects on LPMs and endometrial repair were analyzed. Flow cytometry, western blotting, quantitative real-time PCR, immunohistochemical analysis, ELISA, and RNA-sequencing were performed. RESULTS: We found that LPMs migrated to the injured uteri in response to the damage in early phase (3 h), and sustained to a later stage (7 days). Astonishingly, we found that ferroptotic monocytes/macrophages were significantly increased in the injured uteri since 12 h after injury. Moreover, LPMs cocultured with Erastin-induced ferroptotic THP-1 cells in vitro, efferocytosis of LPMs against ferroptotic monocytes/macrophages was emerged. The mRNA expression profiles revealed that LPM efferocytosis against ferroptotic monocytes/macrophages was an induction of glycolysis program and depended on the PPARγ-HK2 pathway. Importantly, we validated that MSCs promoted the efferocytic capability and migration of LPMs to the injured uteri via secreting stanniocalcin-1 (STC-1). CONCLUSION: The data collectively demonstrated first the roles of LPMs via removal of ferroptotic monocytes/macrophages and provided a novel mechanism of MSCs in repairing the endometrial injury.


Macrophages, Peritoneal , Mesenchymal Stem Cells , Monocytes , Female , Animals , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Monocytes/metabolism , Monocytes/cytology , Humans , Macrophages, Peritoneal/metabolism , Endometrium/injuries , Endometrium/metabolism , Endometrium/cytology , Endometrium/pathology , Phagocytosis , Mice, Inbred C57BL , Disease Models, Animal , Efferocytosis
18.
Atherosclerosis ; 392: 117529, 2024 May.
Article En | MEDLINE | ID: mdl-38583289

BACKGROUND: Mechanistic studies suggest that proprotein convertase subtilisin/kexin type 9 inhibitors can modulate inflammation. METHODS: Double-blind, placebo-controlled trial randomized 41 ASCVD subjects with type 2 diabetes with microalbuminuria and LDL-C level >70 mg/dL on maximum tolerated statin therapy received subcutaneous evolocumab 420 mg every 4 weeks or matching placebo. The primary outcomes were change in circulating immune cell transcriptional response, lipoproteins and blood viscosity at 2 weeks and 12 weeks. Safety was assessed in all subjects who received at least one dose of assigned treatment and analyses were conducted in the intention-to-treat population. RESULTS: All 41 randomized subjects completed the 2-week visit. Six subjects did not receive study medication consistently after the 2-week visit due to COVID-19 pandemic suspension of research activities. The groups were well-matched with respect to age, comorbidities, baseline LDL-C, white blood cell counts, and markers of systemic inflammation. Evolocumab reduced LDL-C by -68.8% (p < 0.0001) and -52.8% (p < 0.0001) at 2 and 12 weeks, respectively. There were no differences in blood viscosity at baseline nor at 2 and 12 weeks. RNA-seq was performed on peripheral blood mononuclear cells with and without TLR4 stimulation ("Stress" transcriptomics). "Stress" transcriptomics unmasked immune cell phenotypic differences between evolocumab and placebo groups at 2 and 12 weeks. CONCLUSIONS: This trial is the first to demonstrate that PCSK9 mAB with evolocumab can modulate circulating immune cell properties and highlights the importance of "stress" profiling of circulating immune cells that more clearly define immune contributions to ASCVD.


Antibodies, Monoclonal, Humanized , Cholesterol, LDL , Monocytes , PCSK9 Inhibitors , Proprotein Convertase 9 , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Male , Female , Middle Aged , Double-Blind Method , Monocytes/drug effects , Monocytes/metabolism , Monocytes/immunology , Aged , Cholesterol, LDL/blood , Proprotein Convertase 9/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/immunology , Anticholesteremic Agents/therapeutic use , Lipoproteins/blood , Treatment Outcome , COVID-19/blood , COVID-19/immunology , Blood Viscosity/drug effects
19.
Proc Natl Acad Sci U S A ; 121(19): e2313823121, 2024 May 07.
Article En | MEDLINE | ID: mdl-38683980

HIV latency regulation in monocytes and macrophages can vary according to signals directing differentiation, polarization, and function. To investigate these processes, we generated an HIV latency model in THP-1 monocytes and showed differential levels of HIV reactivation among clonal populations. Monocyte-to-macrophage differentiation of HIV-infected primary human CD14+ and THP-1 cells induced HIV reactivation and showed that virus production increased concomitant with macrophage differentiation. We applied the HIV-infected THP-1 monocyte-to-macrophage (MLat) model to assess the biological mechanisms regulating HIV latency dynamics during monocyte-to-macrophage differentiation. We pinpointed protein kinase C signaling pathway activation and Cyclin T1 upregulation as inherent differentiation mechanisms that regulate HIV latency reactivation. Macrophage polarization regulated latency, revealing proinflammatory M1 macrophages suppressed HIV reactivation while anti-inflammatory M2 macrophages promoted HIV reactivation. Because macrophages rely on reactive-oxygen species (ROS) to exert numerous cellular functions, we disrupted redox pathways and found that inhibitors of the thioredoxin (Trx) system acted as latency-promoting agents in T-cells and monocytes, but opposingly acted as latency-reversing agents in macrophages. We explored this mechanism with Auranofin, a clinical candidate for reducing HIV reservoirs, and demonstrated Trx reductase inhibition led to ROS induced NF-κB activity, which promoted HIV reactivation in macrophages, but not in T-cells and monocytes. Collectively, cell type-specific differences in HIV latency regulation could pose a barrier to HIV eradication strategies.


Cell Differentiation , HIV Infections , HIV-1 , Homeostasis , Macrophages , Monocytes , Oxidation-Reduction , Reactive Oxygen Species , Virus Activation , Virus Latency , Humans , Virus Latency/physiology , Macrophages/virology , Macrophages/metabolism , Monocytes/virology , Monocytes/metabolism , HIV-1/physiology , HIV Infections/virology , HIV Infections/metabolism , Virus Activation/physiology , Reactive Oxygen Species/metabolism , THP-1 Cells , Signal Transduction , Protein Kinase C/metabolism
20.
Int Immunopharmacol ; 133: 111877, 2024 May 30.
Article En | MEDLINE | ID: mdl-38608440

The gut microbiome plays an important role in tumor growth by regulating immune cell function. However, the role of the gut microbiome-mediated monocytes in liver metastasis remains unclear. In this study, we found that fecal microbiome transplantation (FMT) from the stool of patients with liver metastasis (LM) significantly promoted liver metastasis compared with healthy donors (HD). Monocytes were upregulated in liver tissues by the CCL2/CCR2 axis in LM patients' stool transplanted mouse model. CCL2/CCR2 inhibition and monocyte depletion significantly suppress liver metastasis. FMT using LM patients' stool enhanced the plasma lipopolysaccharides (LPS) concentration. The LPS/TLR4 signaling pathway is crucial for gut microbiome-mediated liver metastasis. These results indicated that monocytes contribute to liver metastasis via the CCL2/CCR2 axis.


Chemokine CCL2 , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Liver Neoplasms , Monocytes , Receptors, CCR2 , Toll-Like Receptor 4 , Gastrointestinal Microbiome/immunology , Animals , Humans , Liver Neoplasms/secondary , Liver Neoplasms/immunology , Monocytes/immunology , Chemokine CCL2/metabolism , Mice , Receptors, CCR2/metabolism , Toll-Like Receptor 4/metabolism , Male , Lipopolysaccharides/immunology , Mice, Inbred C57BL , Female , Signal Transduction , Cell Line, Tumor , Liver/pathology , Liver/immunology , Liver/metabolism
...